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Abstract—In this paper, we consider an underlay radar-
massive MIMO spectrum sharing scenario in which massive
MIMO base stations (BSs) with elevation beamforming capa-
bilities are allowed to operate outside a circular exclusion zone
centered at the radar. Modeling the locations of the massive
MIMO BSs as a homogeneous Poisson point process (PPP), we
derive an analytical expression for a tight upper bound on the
average interference at the radar due to cellular transmissions.
The challenge lies in bounding the worst-case elevation angle for
each massive MIMO BS, for which we devise a novel construction
based on the circumradius distribution of a typical Poisson-
Voronoi (PV) cell. While these worst-case elevation angles are
correlated for neighboring BSs due to the structure of the PV
tessellation, it does not explicitly appear in our analysis because of
our focus on the average interference. We also provide an estimate
of the nominal average interference by approximating each cell
as a circle with area equal to the average area of the typical
cell. Using these results, we demonstrate that the gap between
the two results remains approximately constant with respect to
the exclusion zone radius. Our analysis reveals useful trends
in average interference power, as a function of key deployment
parameters such as radar/BS antenna heights, number of antenna
elements per radar/BS, BS density, and exclusion zone radius.

Index Terms—Stochastic geometry, radar-massive MIMO
coexistence, 3D beamforming, Rician channels, exclusion zones,
average interference.

I. INTRODUCTION

Spectrum sharing and massive MIMO are two key spectral

efficiency enhancing techniques that have been included in

the Third Generation Partnership Project (3GPP) Release 15

specifications. While massive MIMO enhances spectral effi-

ciency by increasing the dimension of spatial multiplexing

by an order of magnitude, spectrum sharing improves it by

sharing spectrum between different wireless technologies in

the spatial and temporal dimensions. Spectrum sharing is

particularly attractive in the sub-6 GHz frequency bands,

where spectrum is under-utilized due to conservative policies

[1]. Among the various incumbents, radars are the biggest

consumer of spectrum in the sub-6 GHz bands. In underlay

radar-cellular spectrum sharing scenarios where the estab-

lishment of an exclusion zone limits cellular interference to
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the radar, coordination is often impossible due to security

concerns, or unfeasible due to practical limitations. The lack

of coordination can potentially exacerbate the interference due

to receive and transmit beamforming capabilities of the radar

and BS, respectively. Therefore, it is important to understand

the worst-case interference at the radar as a function of key

deployment parameters in such scenarios.

Related Work: Multi-antenna techniques have been well-

explored in the radar-communications coexistence literature.

In the case of coordination between the primary and secondary

users, MIMO techniques have been investigated in the context

of spectrum sharing between a MIMO radar and the MU-

MIMO downlink [2], MIMO radar and full-duplex cellular

systems [3], and MIMO radar and a MIMO communication

system [4], under performance and power constraints. Even

though secondary user interference mitigation is possible using

multi-antenna radars in uncoordinated scenarios [5], its feasi-

bility in the presence of a large multi-cell network of massive
MIMO BSs is limited to scenarios of sparse deployments

and/or large exclusion zone radii.

Owing to its tractability, tools from stochastic geometry

have been used recently to analyze spectrum sharing systems

[6], [7]. Authors in [8] considered a radar-WiFi spectrum

sharing scenario, where WiFi access points (APs) were mod-

eled as a homogeneous PPP. The exclusion zone radius was

computed for different scenarios based on side-information

available at the APs. In [9], the authors evaluated the mean ag-

gregate interference from Wi-Fi APs to radar using tools from

stochastic geometry. However, these works consider azimuth-

only beamforming, and do not model the impact of elevation

beamforming, which is a prominent feature introduced in

5G NR. While [10], [11] considered the elevation angle, the

focus of these works is on antenna height optimization and

interference mitigation in cellular networks.

Contributions: In this work, we develop a novel and

tractable analytical framework to analyze the average in-
terference power in radar-massive MIMO spectrum sharing

scenarios, which is a key metric that has been used in drafting

spectrum sharing policies in recent years [12]. Incorporating

elevation beamforming into the stochastic geometry frame-

work is challenging, since Voronoi cells of the BSs can

be arbitrarily large. To overcome this, we devise a novel

formulation based on the circumradius distribution of the

Voronoi cell [13]. In addition, the presence of sidelobes result

in a beamforming gain that is a non-monotonic function of the

elevation angle. We derive an upper bound on the beamforming

gain that monotonically decreases with the elevation angle,

which is crucial to deriving the upper bound on the average



Fig. 1. Illustration of the radar-massive MIMO spectrum sharing scenario,
(a) the radar is protected from massive MIMO downlink interference by an
exclusion zone of radius rexc, (b) Top View: the boresight of each BS is
aligned along the direction of the radar, and the radar receives interference
from the azimuth

[−π
2

, π
2

)
depicted by the shaded region, (c) the line of

sight component has elevation angle of departure (θt,L) and arrival (θr,L)
close to 0◦, i.e. the horizon. In our convention, −π/2 ≤ φ < 0◦ for
elevation angles above the horizon, and 0 < φ ≤ π/2 for elevation angles
below the horizon.

interference. We also derive the nominal average interference

power by modeling each Voronoi cell as a circle of area equal

to the average area of a typical cell. Finally, we provide

approximations, that lead to the development of intuitive

system design insights regarding the worst-case exclusion zone

radius, scaling laws, and the difference between the worst-case

and nominal average interference values.

II. SYSTEM MODEL

We consider the radar-massive MIMO spectrum sharing

scenario shown in Fig. 1. The radar is the primary user

(PU), equipped with a N
(rad)
az × N

(rad)
el uniform rectangular

array (URA) with λ
2 -spacing, mounted at a height of hrad

m. The massive MIMO downlink is the secondary user (SU),

with each BS serving K users with equal power allocation

using multi-user MIMO (MU-MIMO). Each BS is equipped

with a N
(BS)
az × N

(BS)
el URA with λ

2 -spacing, mounted

at a height of hBS m. The subscripts az (el) are used to

denote the azimuth (elevation) elements respectively, and

superscripts rad (BS) denote the radar (BS) antenna elements

respectively. The radar is protected from SU interference by a

circular exclusion zone of radius rexc. The exclusion zone is

chosen to be circular since there is no coordination between

the cellular network and the radar system, and the radar is

assumed to search for a target uniformly at random in the

azimuth [−π
2 ,

π
2 ), as shown in Fig. 1.

A. Channel Model

In quasi-stationary channel conditions, the spatial channel

between each BS and the radar is given by [14]

HR =
√

β(d)
1+KR

(√
KRa(θt,L, φt,L)a

H(θr,L, φr,L)+

√
1
Nc

Nc∑
i=1

γia(θt,i, φt,i)a
H(θr,i, φr,i)

)
, (1)

where β(d) = PL(r0)d
−α is the path loss, PL(r0) is the

path-loss at reference distance r0, α is the path-loss exponent

(α > 2), d is the 3D distance between the BS and the radar,

and Nc is the number of discrete multipath components

(MPCs). The Rician factor KR ≫ 1, where propagation is

dominated by the line of sight component1. In addition, the

random small-scale fading amplitude satisfies E[γi] = 0 and

E[|γi|2] = 1. The azimuth and elevation angles of arrival

(departure) of the ith MPC at the radar (from the BS) is

denoted by θr,i (θt,i) and φr,i (φt,i) respectively. Similarly,

the azimuth and elevation angles of departure (arrival)

of the LoS component is given by θt,L (θr,L) and φt,L

(φr,L) respectively as shown in Fig. 1. The steering vector

a(θt, φt) ∈ C
N(BS)

az N
(BS)
el (BS), and a(θr, φr) ∈ C

N(rad)
az N

(rad)
el

(radar) is defined in Appendix A.

B. Massive MIMO Downlink Beamforming Model

The massive MIMO downlink serves K users located in

clusters with mutually disjoint angular support using joint

spatial division multiplexing (JSDM) [15]. We consider a

highly spatially correlated downlink channel, given by the

one-ring model as hi =
√
βiUiΛ

1/2
i zi ∈ C

M [15], where

M = N
(BS)
az N

(BS)
el , βi is the large-scale pathloss for the

ith user, Ui ∈ C
M×r is the orthonormal matrix of eigen-

vectors, Λi ∈ R
r×r is the diagonal matrix of eigenvalues,

and zi ∼ CN (0, Ir) ∈ C
r is a complex Gaussian random

vector, where r � M is the channel rank in the high spatially

correlated downlink channel [15]. For the sake of simplicity,

we consider that all users in the network have the same channel

rank. The received signal y ∈ C
K can be written as

y = HHWRFWBBd+ n, (2)

where WRF = [wRF,1 wRF,2 · · ·wRF,K] ∈ C
M×K is

the RF beamformer that groups user clusters with disjoint

angular support using nearly orthogonal beams, and WBB =
[wBB,1 wBB,2 · · ·wBB,K] ∈ C

K×K is the baseband pre-

coder [15]. If the azimuth and elevation angular support of the

kth user cluster is given by Θk = [θ
(min)
k , θ

(max)
k ] and Φk =

[φ
(min)
k , φ

(max)
k ], then without loss of generality we consider

that the RF beamformer is given by wRF,k = 1√
M
a(θk, φk),

where θk = (θ
(min)
k + θ

(max)
k )/2 and φk = (φ

(min)
k + φ

(max)
k )/2.

The data d = [d1 d2 · · · dK ]T ∈ C
K , such that E[d] = 0

and E[ddH ] = PBS

K I, where dk is the symbol intended for

the kth UE and PBS is the total transmit power per BS. The

noise n ∈ C
K is spatially white with n ∼ CN (0, σ2

nI).

Proposition 1. For the massive MIMO BS in the asymptotic
regime, the baseband precoding matrix for Zero-Forcing (ZF)
and Maximum Ratio Transmission (MRT) can be approximated
as WBB ≈ I, when K users from different clusters with
mutually disjoint angular support are served.

1Such propagation scenarios are observed in (a) coastal deployments (where
the terrestrial BSs is sharing spectrum with a naval radar), and (b) terrestrial
deployments in flat rural/suburban terrain (terrestrial BSs sharing spectrum
with terrestrial radar systems).



Proof. (Sketch) The MRT and ZF precoders are W
(MRT)
BB =

WH
RFH and W

(ZF)
BB = (HHWRF)

−1 respectively. In the

asymptotic regime WH
RFWRF ≈ I [15]. For users in clusters

with mutually disjoint angular support, UH
i wRB,j ≈ 0, i �= j

[15]. Therefore, HHWRF ≈ Υ = diag[υ1 υ2 · · · υK ], a

diagonal matrix. Since E[ddH ] = PBS

K I, when the sum-power

constraint E[‖WRFWBBd‖2] = PBS is imposed, we obtain

the desired result. �

Remark 1. The above is true when N
(BS)
az , N

(BS)
az → ∞. In

the case of finite number of antenna elements, we consider a
scheduler where the BS co-schedules K users from clusters
such that the above approximation is accurate.

III. INTERFERENCE AT THE RADAR DUE TO A SINGLE BS

The radar is assumed to be searching/tracking a target above

the horizon (φ < 0) using a receive beamformer wrad ∈
C

N(rad)
az N

(rad)
el . The received signal prior to beamforming is

yrad = HH
RWRFWBBd, where HR is the high-KR Rician

channel between the BS and the radar from (1). Upon receive

beamforming, the interference signal is given by

irad = wH
radH

H
RWRFWBBd. (3)

Using equation (1) in the above and simplifying, we get

irad =
√

β(d)
KR+1

(√
KRGrad(θr,L, φr,L)e

−jα0aH(θt,L, φt,L)+

∑Nc

i=1

√
Grad(θr,i,φr,i)

Nc
γ′
ia

H(θt,i, φt,i)
)
WRFWBBd,

where γ′
i = γ∗

i e
−jαi , the radar beamforming gain

Grad(θj , φj) = |wH
rada(θj , φj)|2, and α0 is the residual phase.

The specular component can be ignored if Grad(θr,L, φr,L) �
Grad(θr,i, φr,i). For a tractable worst-case analysis model, we

make the following assumptions.

Assumption 1. (LoS beamforming gain dominance) The radar
is scanning above the horizon with wrad = a(θ,φ)√

N
(rad)
az N

(rad)
el

such that Grad(θr,L, φr,L) > Grad(θr,i, φr,i) ∀ 1 ≤ i ≤ Nc.

Assumption 2. (Boresight assumption) Boresight of the an-
tenna array of each massive MIMO BS is aligned along the
direction of radar (θt,L = 0) as shown in Fig. 12.

Assumption 3. The cellular downlink is exactly co-channel
with the radar system, and radar and cellular operating band-
widths are equal. Hence, the frequency-dependent rejection
(FDR) factor of the radar is unity3.

Assumption 4. In each cell, the scheduler allocates resources
to users in different clusters, where all but one cluster has
disjoint angular support with the boresight of the BS URA.

Based on the above assumptions, we have the following

lemma.

2As we will discuss in Appendix A, Assumption 2 does not impact the
worst-case analysis.

3The FDR is dependent on the radar receiver architecture, spectrum of the
interfering signal, and is independent of other parameters. The interference
power at the radar is inversely proportional to the FDR. Interested readers are
referred to [8] for more details.

Lemma 1. (Dominant interfering user cluster) The inter-
ference to the radar from each BS is only due to data
transmissions towards a single cluster whose angular support
overlaps with the boresight of the URA.

Proof. Let the K clusters have azimuth and elevation angles

of support given by Θk and Φk respectively, for 1 ≤ k ≤ K.

In the asymptotic regime, if there is only one k such that

Θk ∩ {0◦} �= ∅, then we get aH(θt,L, φt,L)wRF,j ≈ 0 for

j �= k and aH(θt,L, φt,L)wRF,k �= 0 [15]. The cluster that has

its angular support overlapping with the BS boresight is termed

as the ‘Dominant Interfering User Cluster’ (DIUC). �
Based the above, we have the following key result.

Theorem 1. The worst-case average interference power at the
radar due to the DIUC is given by

Īrad < I
(w)
rad =

β(d)Grad(θr,L,φr,L)|aH(0,φt,L)a(θk,φk)|2PBS

N
(BS)
az N

(BS)
el K

.

(4)

Proof. Under the realistic assumption that each MPC is un-

correlated with the others, the average interference power

Īrad = E[|irad|2] is given by

Īrad =
β(d)KRGrad(θr,Lφr,L)E[‖aH(0,φt,L)WRFWBBd‖2

2]
KR+1 +

Nc∑
i=1

β(d)Grad(θr,iφr,i)E[γ
′2
i ‖aH(θt,i,φt,i)WRFWBBd‖2

2]
Nc(KR+1) . (5)

Using Assumption 1, we get Īrad < β(d)Grad(θr,L, φr,L) ·
E[‖aH(θt,L, φt,L)WRFWBBd‖22] since E[|γ′

i|2] = 1. In

addition, by Proposition 1, Assumption 2 and Lemma 1, we

get Īrad < E[|aH(0, φt,L)wRF,kdk|2]β(d)Grad(θr,L, φr,L).
Finally, using E[|dk|2] = PBS/K and substituting the RF

beamformer for the DIUC, we obtain the desired result. �
In summary, the worst-case average interference in high-

KR Rician channels in the asymptotic regime resembles

the Friis transmission equation, with the power scaled by

the beamforming gains, and the power allocation factor to

the DIUC. With this general result, we analyze the average

interference due to the cellular network in the next section.

IV. ANALYSIS OF AVERAGE INTERFERENCE AT THE

RADAR DUE TO THE MASSIVE MIMO DL

We model the spatial distribution of the massive MIMO

BSs and radars as independent PPPs ΦBS and Φrad of

intensity λBS and λrad respectively, such that λrad ≪ λBS .

The typical radar is located at the origin, with an exclusion

zone of radius rexc within which the BSs are prohibited

from operating. While the range of azimuth of a randomly

selected point in the cell is independent of the cell size, the

elevation angle depends on the cell size and hence, on λBS .

Compared to prior works [8], [9] which focus on beamforming

in the azimuth, mathematical modeling of elevation beamform-

ing presents technical challenges due to (a) lack of radial

symmetry in the Voronoi cell, (b) possibility of arbitrarily

large Voronoi cells, and (c) correlation between adjacent cells,

which can affect the elevation distribution. While correlation

between adjacent cells does not deter the analysis since we are



interested in the average interference power, the lack of radial

symmetry and possibility of arbitrarily large cells need a more

thoughtful treatment. In addition, the presence of sidelobes in

the beamforming pattern complicates the problem since it is

non-trivial to express the worst-case beamforming gain as a

function of the cell-size. Below, we develop the techniques to

address these issues, and present the worst-case and nominal

average interference analysis.

Lemma 2. (Monotonic beamforming gain function) For the
Naz×Nel BS URA with λ/2-spacing, if φ ∈ [−π/2, π/2), 0 ≤
φm ≤ π

2 , and θ ∈ [−π/2, π/2), then the upper bound of the
beamforming gain is given by

G
(max)
BS (φ, φm) = max

φk∈[φm,π/2)
θk∈[−π/2,π/2)

GBS(θ, φ, θk, φk) (6)

=

⎧⎪⎪⎨
⎪⎪⎩

NazNel, if φm ≤ φ,

GBS(0, φ, 0, φm), if sinφm ≤ 1+Nel sinφ
Nel

Naz/Nel

sin2
(π(sinφm−sinφ)

2

) , otherwise

where GBS(θ, φ, θk, φk) =
1

NazNel
|aH(θ, φ)a(θk, φk)|2.

Proof. See Appendix A. �

A. Circumcircle-based Cell (CBC) Model

To induce radial symmetry in the setup, the Voronoi cell

needs to be modeled as a circle. In addition, the worst-case

interference to the radar occurs when the BS beamforms to

the farthest point in the cell, according to Lemma 2. Since the

circumradius determines the distance to the farthest point in a

cell, we propose a circumcircle-based construction as shown

in Fig. 2, with the following probability density function.

Proposition 2. The probability density function of the circum-
radius rc (rc > 0) of a Poisson-Voronoi cell is

fRC
(rc) = 8πλBSrce

−4πλBSr2c

[
1 +

∑
k≥1

{
(−4πλBSr2c)

k

k! ·(
ψk(rc)

8πλBSrc
− ζk(rc)

)
− (−4πλBSr2c)

k−1ζk(rc)
(k−1)!

}]
,

ζk(rc) =

∫
‖u‖1=1,ui∈[0,1]

[ k∏
i=1

F (ui)
]
e
4πλBSr2c

k∑
i=1

ui∫
0

F (t)dt
du,

ψk(r) =
dζk(r)

dr , F (t) = sin2(πt)�(0 ≤ t ≤ 1
2 ) + �(t > 1

2 ),

where �(·) denotes the indicator function.

Proof. The result is obtained by differentiating the CDF of the

circumradius (FRC
(rc)) [13] w.r.t. rc using Leibniz’s rule. �

Using fRC
(rc) and Lemma 2, we obtain the upper bound

on the average interference in the following key result.

Theorem 2. The worst-case average interference at the radar
is given by

Īrad,cbc =
λBSPBSPL(r0)

K

∫ π
2

−π
2

∫ ∞

rexc

∫ ∞

0

Grad(θr,L,−φt,L(r))·

rG
(max)
BS (φt,L(r),φm(rc))

(r2+(hrad−hBS)2)α/2 fRC
(rc)drcdrdθr,L, (7)

φt,L(r) = tan−1
(
hBS−hrad

r

)
, φm(rc) = tan−1

(
hBS

rc

)
.

Fig. 2. Radial symmetry can be induced by modeling the Voronoi cell as
a (a) circumcircle, or (b) circle of area equal to that of the average typical cell.

Proof. See Appendix B. �

Corollary 1. The approximate worst-case average interfer-
ence at the radar is given by

Ī
(approx)
rad,cbc = λBSPBSPL(r0)

K(α−2)rα−2
exc

[ ∫ π
2

−π
2

Grad(θr,L, 0)dθr,L

]
·

[ ∫ ∞

0

G
(max)
BS (0, φm(rc))fRC

(rc)drc

]
. (8)

Proof. Since r � hBS and r � hrad, we have φt,L(r) =

−φr,L(r) ≈ 0, and (r2 + (hBS − hrad)
2)

α
2 ≈ rα. Using

these approximations in Īrad,cbc, grouping the integrands, and

integrating over r yields the desired result. �

B. Average Area-Equivalent Circular Cell (AAECC) Model

The circumcircle-based cell model results in a conservative

value for average interference. A simpler, more optimistic

model is to replace the Voronoi cell by a circle with an area

equal to the average area of a typical cell given by 1
λBS

. In

this case, the cell radius rc = ra = 1√
πλBS

, and the nominal

average interference is given by the following theorem.

Theorem 3. The nominal average interference at the radar is

Īrad,aaecc =
λBSPBSPL(r0)

K

∫ π
2

−π
2

∫ ∞

rexc

Grad(θr,L, φr,L(r))·

rG
(max)
BS

(
φt,L(r),φm(ra)

)
(r2+(hrad−hBS)2)α/2 drdθr,L. (9)

Proof. This model is a special case of Theorem 2, where

fRc(rc) = δ
(
rc − 1√

πλBS

)
. Using the sifting property of the

Dirac delta function δ(·), we obtain the desired result. �

Corollary 2. The approximate nominal average interference
is given by

Ī
(approx)
rad,aaecc =

λBSPBSPL(r0)G
(max)
BS

(
0,φm(ra)

)
K(α−2)rα−2

exc

∫ π
2

−π
2

Grad(θ, 0)dθ.

Proof. The proof follows the same steps as Corollary 1. �



Fig. 3. Worst-case average interference power at the radar, as a function of
exclusion zone radius for hrad = 20 m, hBS = 50 m, and different base
station densities λBS (km−2).

C. System Design Insights from Analytical Results

1) Scaling of average interference power with BS density:
From (7) and (9), we see that λBS impacts the average

interference through the linear, and the BS beamforming gain

(GBS) terms. It is related to the cell size via the circumradius

distribution and the average area of the typical cell, which

impacts the minimum elevation angle (φm). Note that this

dependence is not observed in azimuth-only beamforming

models. However, when hBS � rc, φm(rc) → 0 and hence,

GBS → N
(BS)
az N

(BS)
el . In this regime, the worst-case average

interference power scales linearly with λBS .

2) Exclusion Zone Radius: In practice, exclusion zones are

defined based on the average aggregate interference power (for

e.g. see [12]). Using Corollaries 1 and 2, for an average in-

terference threshold Īth, the worst-case exclusion zone radius

can be obtained using

r(wor)exc ≈
(

λBSPBSPL(r0)
K(α−2)Īth

[ ∫ π
2

−π
2

Grad(θr,L, 0)dθr,L

]
·

[ ∫ ∞

0

G
(max)
BS (0, φm(rc))fRC

(rc)drc

]) 1
α−2

, α > 2.

3) Constant Gap in Average Interference Predicted by CBC
and AAECC Models: By Corollaries (1) and (2), we observe

that the ratio of average interference powers is nearly inde-

pendent of rexc, given by

η =
Ī
(approx)
rad,cbc

Ī
(approx)
rad,aaecc

=
∫ ∞
0

G
(max)
BS (0,φm(rc))fRC

(rc)drc

G
(max)
BS

(
0,φm

(
1√

πλBS

)) .

Note that η → 1 when hBS

√
πλBS → 0 due to BS gain

saturation.

V. NUMERICAL RESULTS

In this section, we validate the worst-case interference

expressions using Monte-Carlo simulations. We consider a

typical radar operating at fc = 5 GHz, located at the origin

equipped with a 40 × 40 URA, mounted at a height of

TABLE I
APPROXIMATE VALUES OF η

hBS
√
πλBS 0.0089 0.0198 0.028 0.044 0.0886 0.1253
η 1.004 1.022 1.045 1.254 1.608 2.905

hrad = 20 m. The radar is assumed to be scanning a region

above the horizon at (θ, φ) = (60◦,−10◦). We consider a

finite massive MIMO network in a circular region around the

origin with a radius of 100 km. The BSs are distributed as

a PPP, with varying intensities. Each massive MIMO BS is

co-channel with the radar, and is equipped with a 10 × 10
URA deployed at a height of hBS = 50 m. The circular

exclusion zone around the radar has a minimum radius of

r
(min)
exc = 5 km. The boresight of each massive MIMO BS URA

is aligned along the direction of the radar (θk = 0 in the LCS).

In each cell, the massive MIMO BS transmits a total power

of PBS = 1 W, equally allocated among co-scheduled UEs

from K = 4 clusters with mutually disjoint angular support.

To model the pathloss in the downlink and the BS to radar

channels, we assume the 3GPP 3D Urban Macro (3D UMa)

LoS pathloss model [14],

PL(d) = P (hBS , hrad) + 20 log10(fc) + 40 log10(d) (dB),

P (hBS , hrad) = 28− 9 log10((hBS − hrad)
2) (dB),

where fc (GHz), and d (m).

Fig. 3 plots the average interference power derived in this

paper under different cell models, as a function of exclusion

zone radius for different BS intensities. We observe that the

upper bound is remarkably tight, especially for low values

of λBS ≤ 0.1. For reference, we also plot the approximate

average interference power from corollary 1. It can be seen that

its accuracy improves as rexc increases, due to the accuracy

of the underlying approximations regarding d and φr,L. The

approximately linear scaling of average interference power

with λBS can also be observed.

From Fig. 3, we observe that the ratio of average interfer-

ence powers η is approximately constant, and is tabulated for

the elevation parameter hBS

√
πλBS in Table I. For 3GPP

UMa deployments with inter-site distance rISD, the typical

hBS/rISD = 0.05 [14]. The corresponding hBS

√
πλBS =

0.095, for which 2 dB < η < 4.6 dB (Table I). Thus

the bound is remarkably tight, which makes it useful for

worst-case analysis of practical radar-5G NR spectrum sharing

deployments.

VI. CONCLUSION AND PROPOSED WORK

In this paper, we presented a novel construction based

on modeling a Poisson Voronoi cell by its circumcircle, to

analyze the worst-case average interference at a typical radar

due to a co-channel massive MIMO downlink in a high KR-

Rician channel. The proposed model accounted for elevation

beamforming capabilities of the massive MIMO BS and the

radar, and uncovered the relationship between the BS density

and the worst-case BS transmit beamforming gain. We also

proposed and analyzed the nominal average interference using

an alternate, simpler model, where each cell is replaced by a

circle of area equal to the average area of a typical cell. Finally,



we provided useful insights regarding the worst-case exclusion

zone radius, scaling of interference power with BS density,

and the approximate gap between the worst-case and nominal

average interference power. Our analysis was validated using

Monte-Carlo simulations, and we demonstrated that the upper

bound using the circumcircle-based model is remarkably tight

for realistic deployment parameters. The analytical framework

presented in this work establishes important baselines to ana-

lyze worst-case scenarios in future radar-NR spectrum sharing

deployments. Incorporation of radar-specific parameters into

the analysis, and characterization of the interference distribu-

tion are natural extensions of this work, and are currently being

investigated by the authors.

APPENDIX

A. Proof of Lemma 2

The steering vector of a Naz × Nel URA is a(θ, φ) =
aaz(θ, φ) ⊗ ael(φ), where ⊗ is the Kronecker product. For
λ
2 -spacing,

aaz(θ, φ) = [1 e−jπ sin θ cosφ · · · e−jπ(Naz−1) sin θ cosφ] ∈ C
Naz ,

ael(φ) = [1 e−jπ sinφ · · · e−jπ(Nel−1) sinφ] ∈ C
Nel .

Using the properties of the Kronecker product, we get

GBS(θ, φ, θk, φk) =
|aH(θ,φ)a(θk,φk)|2

NazNel
=

|aH
az(θ,φ)aaz(θk,φk)|2

Naz
·

|aH
el(φ)ael(φk)|2

Nel
. After expanding and simplifying, we get

GBS(θ, φ, θk, φk) =
sin2

(
π
2Naz(sin θ cosφ−sin θk cosφk)

)
Naz sin2

(
π
2 (sin θ cosφ−sin θk cosφk)

)×
sin2

(
π
2Nel(sinφ−sinφk)

)
Nel sin2

(
π
2 (sinφ−sinφk)

) ≤ NazNal.

Since
sin2(Na)
sin2 a

≤ N2 for a ∈ R, the universal upper bound

is obtained above, and is achieved when a = 0. To obtain a

tighter bound G
(max)
BS defined in (6), we consider the following.

1) Case 1: If φm ≤ φ ≤ π
2 , GBS(θ, φ, θk, φk) is maximized

by φk = φ, θk = θ, yielding G
(max)
BS (φ, φm) = NazNel.

2) Case 2: By upper bounding the azimuth beam-
forming gain in GBS(·), we get GBS(θ, φ, θk, φk) ≤
Naz

sin2
(
π
2Nel(sinφ−sinφk)

)
Nel sin2

(
π
2 (sinφ−sinφk)

) . The RHS monotonically de-

creases w.r.t. φk when 0 ≤ sinφm ≤ 1+Nel sinφ
Nel

≤ π
2 and

hence, the upper bound will be given by G
(max)
BS (φ, φm) =

Naz
sin2

(
π
2Nel(sinφ−sinφm)

)
Nel sin2

(
π
2 (sinφ−sinφm)

) .

3) Case 3: If 1+Nel sinφ
Nel

≤ sinφm, the numerator of

G
(max)
BS (·) in case 2 can be upper bounded as sin2(b) ≤ 1 ∀ b ∈

R, resulting in a monotonically decreasing function of φm.

Hence, G
(max)
BS (φ, φm) =

Naz

Nel sin2
(
π
2 (sinφ−sinφm)

) .

Remark 2. The upper bound on the beamforming gain is
independent of the azimuth angle, since the maximum azimuth
beamforming gain can be upper bounded by Naz . Therefore
for the sake of simplicity, we consider that the boresight of
each BS is aligned along the direction of the radar, which
corresponds to θ = 0◦ as discussed in Assumption 2.

B. Proof of Theorem 2

Since the radar and massive MIMO BSs are independent

PPPs Φrad and ΦBS of intensities λrad and λBS respectively

with λrad ≪ λBS , the worst-case average interference at the

typical radar is given by Campbell’s theorem using

Īrad,cbc = E

[
E

[ ∑
X∈ΦBS\Φexc

{I(w)rad(Xi, hBS , hrad)|rc}
]∣∣∣rc

]

= E

[ ∫
x∈R2\Φexc

λBS{I(w)rad(x, hBS , hrad)|rc}dx
∣∣∣rc

]
,

where x = [r cos θr,L r sin θr,L], Φexc = {r|r ≤ rexc}
denotes the circular exclusion zone, and rc is the cell radius

that determines G
(max)
BS (φ, φm) in equation (6). Substituting (4)

above, noting that φr,L(r) = −φt,L(r) = tan−1
(
hrad−hBS

r

)
,

and converting to polar coordinates we get

Īrad,cbc = E

[ ∫ ∞

rexc

∫ π
2

−π
2

λBSβ(d)Grad(θr,L, φr,L(r))·

G
(max)
BS (φt,L(r), φm(rc))

PBS

K rdrdθr,L

∣∣∣rc
]
, (10)

where d =
√
r2 + (hBS − hrad)2, and β(d) = PL(r0)d

−α

is the pathloss model. Using these and integrating over rc ∼
fRc

(rc), we get the desired result.
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